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[1] We estimate nitrous oxide (N2O) emissions from Central
California for the period of December 2007 through
November 2009 by comparing N2O mixing ratios measured
at a tall tower (Walnut Grove, WGC) with transport model
predictions based on two global a priori N2O emission
models (EDGAR32 and EDGAR42). Atmospheric particle
trajectories and surface footprints are computed using the
Weather Research and Forecasting (WRF) and Stochastic
Time-Inverted Lagrangian Transport (STILT) models.
Regression analyses show that the slopes of predicted on
measured N2O from both emission models are low, sug-
gesting that actual N2O emissions are significantly higher
than the EDGAR inventories for all seasons. Bayesian
inverse analyses of regional N2O emissions show that pos-
terior annual N2O emissions are larger than both EDGAR
inventories by factors of 2.0� 0.4 (EDGAR32) and 2.1� 0.4
(EDGAR42) with seasonal variation ranging from 1.6 � 0.3
to 2.5 � 0.4 for an influence region of Central California
within approximately 150 km of the tower. These results
suggest that if the spatial distribution of N2O emissions in
California follows the EDGAR emission models, then actual
emissions are 2.7 � 0.5 times greater than the current Cali-
fornia emission inventory, and total N2O emissions account
for 8.1 � 1.4% of total greenhouse gas emissions from
California. Citation: Jeong, S., C. Zhao, A. E. Andrews, E. J.
Dlugokencky, C. Sweeney, L. Bianco, J. M. Wilczak, and M. L.
Fischer (2012), Seasonal variations in N2O emissions from cen-
tral California, Geophys. Res. Lett., 39, L16805, doi:10.1029/
2012GL052307.

1. Introduction

[2] Nitrous oxide (N2O) ranks as the third most important
long-lived greenhouse gas (GHG) from a regulatory per-
spective behind CH4 and CO2 [Hofmann et al., 2006;
Montzka et al., 2011] based on changes in the amount of N2O
in the atmosphere since the start of the industrial revolution,

its long atmospheric residence time (�110 years), and its
ability to absorb infrared radiation. Given the significance of
N2O as a GHG it is important to be able to quantify changes in
emissions. A recent study showed that a large portion of
the increase in global atmospheric N2O can be attributed to
the use of fertilizers [Park et al., 2012]. However, current
process-level understanding and driving data are not suffi-
cient to accurately predict N2O emissions from the multiple
sources. Thus, there are large uncertainties in estimating
N2O emissions using bottom-up models. Inversions which
use concentration changes in N2O and transport to infer
sources provide an effective tool for understanding N2O
emissions. Correspondingly, attention has focused on inverse
model assessment of global [Huang et al., 2008;Hirsch et al.,
2006], and regional [Kort et al., 2008; Corazza et al., 2011]
N2O sources.
[3] California currently emits approximately 500 Tg of

CO2 equivalent (CO2 eq) GHGs per year (100-year global
warming potential (GWP) = 310 g CO2 eq/g N2O [IPCC,
1995]), with N2O currently estimated to contribute �3% of
the total [California Air Resources Board (CARB), 2012].
However, regional N2O emission estimates are likely uncer-
tain by at least 50% [National Research Council, 2010].
California has committed to an ambitious plan to reduce GHG
emissions to 1990 levels by 2020 through Assembly Bill 32
(AB32). Verifying the success of emission control strate-
gies will require quantitative accounting for current and
future GHG emissions including N2O. Despite the importance
of regional verification of N2O emissions, measurements have
yet to constrain seasonal or regional N2O emissions from
California.
[4] In this paper, we quantify N2O emissions from Central

California using measurements of N2O from daily discrete
air samples collected from December 2007 to November
2009 within a Bayesian inverse modeling framework, the
first analysis of seasonal variations in N2O emissions from
the mixed urban and rural area of Central California.

2. Methods

2.1. Measurements

[5] In 2008 and 2009, air samples were collected nearly
daily at 91 m above the surface from a tall tower near Walnut
Grove (WGC), California (lat = 38.27�N, lon = 121.49�W)
as part of the NOAA Global Monitoring Division, Carbon
Cycle Groups’ tall tower measurement program (www.esrl.
noaa.gov/gmd/ccgg/towers/). The approximately 2 liter
samples were each collected during a two-minute period
within a few minutes of 2200 GMT (1400 local time, LT).
N2O dry-air mole fractions were subsequently measured
using gas chromatography with electron capture detection
relative to NOAA’s N2O standard scale [Hall et al., 2007]
with a repeatability of 0.4 ppb (68% confidence interval).
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These samples were analyzed on the same analytical systems
used for weekly discrete samples collected from NOAA’s
Global Cooperative Air Sampling network (www.esrl.noaa.
gov/gmd/ccgg/flask.html).

2.2. Footprint Simulations

[6] Predicted contributions to N2O mixing ratios from
emissions within the modeling domain are calculated as FE,
where F is the footprint, which represents the sensitivity of
the receptor to surface influences, and E is the a priori
emissions. Footprints are calculated using the Stochastic
Time-Inverted Lagrangian Transport (STILT) model [Lin
et al., 2003]. In this study, 500 particles are released from
the WGC tower at the time of each air sample and transported
backward in time 5–7 days to insure a majority of the particles
reach positions representative of the background conditions
relative to the California region. The meteorology used to
drive this transport model is simulated by the Weather
Research and Forecasting (WRF2.2) model [Skamarock et al.,
2005], which has been slightly modified to be coupled with
STILT [Nehrkorn et al., 2010] (see the auxiliary material).1

2.3. A Priori Emissions

[7] We use EDGAR 32FT2000 (henceforth EDGAR32)
[Olivier et al., 2005] and EDGAR version 4.2 (EDGAR42)
(European Commission Joint Research Centre (JRC) and
Netherlands Environmental Assessment Agency, Emission
Database for Global Atmospheric Research (EDGAR),
release version 4.2, 2011, http://edgar.jrc.ec.europa.eu) a
priori emission maps (see the auxiliary material) to represent
surface emission sources and sinks for N2O at different
spatial resolutions (1.0� and 0.1�, respectively). The
EDGAR inventory includes all anthropogenic sources of
N2O; emissions are constant in time, without seasonality.
The annual total emission for California from EDGAR32
and EDGAR42 is 21.6 and 20.0 Tg CO2 eq, respectively.
Both EDGAR inventories list emissions that are higher than
the current CARB inventory (16 Tg CO2 eq) [CARB, 2012].
In terms of spatial distribution at the sub-regional scale,
annual emission sums for Regions 6, 7 and 8 near the WGC
tower (see the auxiliary material for region classification)
from EDGAR32 are 1.6, 2.8, 1.4 Tg CO2 eq, which are
similar to those of EDGAR42: 1.3, 2.7, and 1.4 Tg CO2 eq.
As in Kort et al. [2008], we assume that N2O emissions from
unfertilized natural soils are small (see details in the
auxiliary material) compared to emissions from agricultural
soils and other anthropogenic sources in California. In this
regard, N2O emissions from fertilized forest soils are
included in EDGAR42.

2.4. Inverse Method

[8] We apply a scaling factor Bayesian inverse (SFBI)
method to estimate N2O emissions from Central California
using N2O measured at WGC. The local measured mixing
ratios, c, are calculated by subtracting a boundary condition
mixing ratio, representing the estimated mixing ratio of air
entering the domain (see the auxiliary material). As
described in Gerbig et al. [2003], Zhao et al. [2009] and
Jeong et al. [2012], c can be modeled as

c ¼ Kl þ v ð1Þ

with an analytical solution for l as

lpost ¼ KTR�1K þQ�1
l

� ��1
KTR�1cþQ�1

l lprior

� � ð2Þ

where K = FE, l is a state vector for scaling factors, v is a
vector representing the model-measurement mismatch with a
covariance matrix R, lprior is the a priori estimate for l, and
Ql is the error covariance associated with lprior. The pos-
terior error covariance for l, Vpost, is (K

TR�1K + Ql
�1)�1.

We apply the SFBI method at the monthly scale (l = 13 � 1
vector for each month) to resolve seasonal variations. Data
for the same month from 2008 and 2009 are combined,
yielding 30–60 data points depending on the availability of
flask measurements. National Research Council [2010]
reported that N2O emission estimate uncertainties for agri-
cultural soils and manure management range from 10% to
more than 100%. Because the Central California region
includes large N2O emission sources such as agriculture
fertilizers and livestock [Park et al., 2012], we use 100%
uncertainty in our a priori emission models.
[9] Following Bergamaschi et al. [2005] and Jeong et al.

[2012], outliers are removed after the initial inversion to
avoid biases that might be introduced by the outliers. The
second (final) inversion uses data that are accepted by
applying the selection criteria |ci � (Kl)i|2 < aRi, where a is
a fixed value within each month. As in the first inversion, the
final inversion is performed using the original a priori
emission maps. The value of a for each month is chosen
such that the chi-square values from the final inversion are
close to unity [Tarantola, 1987] and ranges between 1.7 and
3 in this study.

2.5. Uncertainty Analysis

[10] Along with Ql, the model-measurement mismatch
covariance R controls the relative weighting of the prior flux
estimates and the data in the inversion. In our study that uses
daily air samples, the temporal correlation is expected to be
weak as Lin and Gerbig [2005] showed that the correlation
timescale for wind errors is less than 3 hours. Therefore,
following Gerbig et al. [2003], Zhao et al. [2009], Göckede
et al. [2010], and Jeong et al. [2012] the diagonal elements
of R (off-diagonal elements equal to zero) are estimated
from the linear sum of contributing uncertainties as

Ri ¼ Sbkgd þ StransPBL þ StransWIND þ Spart þ Saggr: ð3Þ

[11] Details for error sources are explained in the auxiliary
material, and we describe them briefly below.
[12] The background uncertainty (Sbkgd) is estimated by

comparing two marine boundary layer background data sets
available for 2008: (1) latitudinally averaged marine
boundary layer N2O background (a 2-dimensional look-up
table), and (2) latitudinally averaged 3-dimensional N2O
curtain for eight different vertical levels (see the auxiliary
material for details). Uncertainty estimates in background
N2O are 0.38, 0.46, 0.24, and 0.28 ppb (henceforth, all errors
reported at 68% confidence) for spring, summer, fall, and
winter, respectively. Uncertainty in predicted N2O signals
due to errors in modeled planetary boundary layer (PBL)
height (StransPBL) is estimated by comparing PBL heights
(Zi) from WRF with measured Zi at wind profiler stations
near the WGC tower as in Zhao et al. [2009] and Jeong et al.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL052307.
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[2012]. We estimate uncertainties of 0.05, 0.03, 0.27, and
0.49 ppb for spring, summer, fall and winter, respectively.
Uncertainty in modeled N2O signals due to errors in mod-
eled winds (StransWIND) is estimated using modeled and
measured winds for the 127 m height on the WGC tower.
Following the experiment with CH4 signals [Jeong et al.,
2012], we adopt 10% of the mean signal level for the wind
uncertainty. For the uncertainties due to the particle number
(Spart) and aggregation error (Saggr), we use 5% and 11% of
the mean signal level respectively, following Jeong et al.
[2012]. Finally, the uncertainties were combined in quadra-
ture to yield total model-data mismatch estimates of 0.40,
0.48, 0.41, and 0.63 ppb for spring, summer, fall and winter,
respectively. Seasonally estimated model-data mismatch
uncertainties are used for all the months belonging to the
given season.

3. Results

3.1. Footprints

[13] Figure 1 shows the average footprints for spring,
summer, fall, and winter in 2008–2009. The footprints for
each season were averaged during the afternoon hours when
measurements were available, mostly at 1400 LT. There is a
clear seasonal pattern for the distribution of footprints,
which is important to attribute signals to different emission
sources for each season. The summer footprints are strongest
from the San Francisco Bay area to the west of the WGC
tower due to the dominance of land-ocean winds. In the
transition seasons of spring and fall, footprints are also
strong in the North Central Valley due to a shift toward
north-south winds. The winter footprints are strongest in the
Central Valley, while reaching the northern San Joaquin

Valley. The spatial distribution of footprints for the four
seasons shows that tower measurements are sensitive to
Regions 6, 7, and 8, and our inverse analysis focuses on
these three regions where a large reduction in posterior
uncertainties is obtained.

3.2. Linear Regression Analysis

[14] We compare predicted and measured local N2O
signals at WGC using a chi-squared (fitexy) linear regression
analysis [Press et al., 1992] that considers uncertainties in
parameters of both axes. Table 1 summarizes the results
obtained from regression analyses for each month between
December 2007 and November 2009. The slopes of predicted
on measured N2O from both emission models are generally
less than 1, while showing some seasonal variation. The low
slopes suggest that actual N2O emissions are significantly
higher than the EDGAR inventory. The linear analysis
result also suggests that there is no significant difference
between EDGAR32 and EDGAR42 as one might expect
from the regional N2O sums and their spatial distribution
(see Section 2.3). A linear analysis based on continuous
N2O measurements at WGC during April 2010 showed a
similar result with a slope of 0.34 � 0.05 (see the auxiliary
material).

3.3. Bayesian Inverse Analysis

[15] Posterior predicted N2O mixing ratios using EDGAR
emissions were compared with measurements, and the
results are also summarized in Table 1. Compared with the
results before inverse optimization, the fitting slopes from
the final inversion are closer to unity for most of the months,
and the RMS errors are reduced significantly. For March, the
posterior fitting slopes from both EDGAR emission models

Figure 1. Seasonally averaged footprints during the afternoon hours for spring (March, April, May), summer (June, July,
August), fall (September, October, November), and winter (December, January, February). Footprints are shown focusing on
Regions 6, 7 and 8, which are sensitive to the WGC tower (black “x”).

JEONG ET AL.: N2O EMISSIONS FROM CENTRAL CALIFORNIA L16805L16805

3 of 6



are relatively low compared to those of the other months but
do not limit our ability to interpret seasonal N2O emissions.
As will be discussed later, monthly inversion results are not
different from those of seasonal inversions where posterior
slopes for all seasons are near unity.
[16] In the final inversion, outlier points were removed

following Bergamaschi et al. [2005]. The outlier removals
vary with month, excluding 6–20% (mean removal rate =
11.1%) and 4–22% (mean = 13.6%) of the data used in the
first inversion for the EDGAR32 and EDGAR42 models,
respectively. These removal rates are comparable to the 12–
14% rate in Bergamaschi et al. [2005]. In the final inversion,
to solve for 9 � 13 unknowns (13 regions for each month)
we used 313 and 304 observations for the EDGAR32 and
EDGAR42 cases, respectively.
[17] Inferred N2O emissions are reported by season and as

a regional sum over Regions 6, 7 and 8 where reduction in
the posterior uncertainty is significant (Figure 2). The annual
posterior N2O emission summed over the three regions is
11.5 � 2.1 and 11. 6 � 1.9 Tg CO2 eq from the EDGAR32
and EDGAR42 emission models, respectively. Although the
two emission maps have different spatial resolutions, the
estimated regional emissions are consistent. As a sensitivity
analysis, we performed inversions using 200% and 300%

uncertainties in the a priori emission models in addition to
the baseline prior uncertainty (100%). For EDGAR42, the
annual posterior N2O emissions for the three regions were
13.2 � 2.7 and 13.1 � 3.0 Tg CO2 eq for the 200% and
300% uncertainties in the a priori emissions, respectively.
The EDGAR32 case also showed a similar result with no
significant difference in posterior N2O emissions. Averaging
over seasons, annual mean scaling factors from EDGAR32
are 2.4 � 0.5, 2.1 � 0.6, and 1.3 � 0.8 for Regions 6, 7, and
8, respectively, consistent with those obtained with
EDGAR42: 2.6 � 0.6, 2.3 � 0.5, 1.4 � 0.7. Note that these
scaling factors are obtained by comparing posterior emis-
sions from each EDGAR model with the corresponding prior
sum. This result suggests that estimated emissions are con-
siderably greater than the EDGAR emission maps in Region
7 containing San Francisco Bay and surrounding urban
areas. Estimated emissions are also significantly higher
than the EDGAR emission maps in Region 6 containing the
southern end of the Sacramento Valley, where a large fraction
of N2O emissions is expected from agriculture. While pos-
terior uncertainties are reduced significantly in Regions 6 and
7 for all seasons, the uncertainty reduction in Region 8 is
relatively small except for the winter period when footprints
extend significantly to the south of the tower (see Figure 1).

Figure 2. Posterior emission estimates for the three sensitive regions (uncertainty = 1s): (a) EDGAR32 and (b) EDGAR42.

Table 1. Linear Analysis Results Before and After Inverse Optimization

Winter Spring Summer Fall

12–1a 2 3 4–5a 6–7a 8 9 10 11

Before Inverse
E32b Slope 0.32 � 0.06 0.36 � 0.07 0.16 � 0.02 0.25 � 0.04 0.33 � 0.07 0.50 � 0.54 0.29 � 0.07 0.76 � 0.18 0.84 � 0.14

RMSEd 2.18 1.44 0.81 0.82 0.82 0.62 1.02 0.57 0.85
E42c Slope 0.42 � 0.09 0.42 � 0.08 0.12 � 0.02 0.25 � 0.06 0.30 � 0.05 0.29 � 0.43 0.26 � 0.13 0.63 � 0.22 0.93 � 0.17

RMSE 2.18 1.45 0.87 0.88 0.84 0.68 1.10 0.68 0.92

After Inverse
E32 Slope 0.95 � 0.05 0.86 � 0.08 0.64 � 0.08 0.84 � 0.09 0.85 � 0.13 0.85 � 0.48 0.90 � 0.13 1.00 � 0.19 0.93 � 0.06

RMSE 0.63 0.61 0.38 0.38 0.43 0.45 0.38 0.47 0.35
E42 Slope 0.96 � 0.07 0.94 � 0.07 0.51 � 0.05 0.93 � 0.16 0.88 � 0.12 0.68 � 0.39 0.93 � 0.16 1.02 � 0.22 1.02 � 0.07

RMSE 0.77 0.55 0.42 0.43 0.47 0.41 0.43 0.48 0.42

aData for April, July, and December are combined with those of May, June, and January respectively (a total of 9 months), due to missing measurements
and fire period cuts.

bEDGAR32.
cEDGAR42.
dRMSE is in units of ppb.
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This suggests additional measurement stations are needed to
constrain emissions in Region 8, which is likely an important
sub-region in inferring emissions for livestock and crop
agriculture.
[18] The posterior scaling factors show clear evidence of

seasonal variation in N2O emissions that is not captured in
the EDGAR a priori models. Summing over Regions 6, 7
and 8, posterior seasonal emissions are 14.1 � 2.4, 11.1 �
2.2, 9.1 � 1.8, 11.8 � 2.1 Tg CO2 eq yr�1 for spring,
summer, fall, and winter, respectively, which are comparable
to those of EDGAR42: 13.8 � 2.3, 12.2 � 2.0, 8.9 � 1.5,
and 11.4 � 1.9 Tg CO2 eq yr�1. We compare this final
inversion result from EDGAR32 with that of the first
inversion, which yielded 17.1 � 2.4, 12.0 � 2.1, 9.6 � 1.8,
13.0 � 1.9 Tg CO2 eq yr�1 for spring, summer, fall, and
winter, respectively. There is no significant difference
between the two inversions, and we found the same result
for the EDGAR42 case. As a sensitivity analysis on the
temporal scale, we used a seasonal temporal scale for
inversion instead of the monthly scale used in our inversion.
We found that the seasonal inversion with EDGAR32 was
not significantly different from the monthly inversion,
yielding posterior emission estimates of 13.6 � 2.0, 13.2 �
3.2, 8.5 � 1.0, and 11.7 � 1.0 Tg CO2 eq yr�1. The sensi-
tivity analysis using a fixed value of 2 for a and EDGAR32
also showed no significant change in posterior emissions,
yielding 14.3 � 2.5, 11.3 � 2.1, 10.0 � 2.1 and 11.0 � 2.2
Tg CO2 eq yr�1. These combined results indicate that pos-
terior N2O emissions for all seasons are significantly higher,
compared to the annual EDGAR32 total (5.8 Tg CO2 eq) or
EDGAR42 total (5.4 Tg CO2 eq) for Regions 6, 7 and 8.
[19] Figure 2 shows the seasonality in N2O emissions in

each sub-region. N2O emissions from Region 6 based on
both EDGAR emission models vary seasonally, showing
largest emissions in spring and summer. Posterior emissions
for Region 7 show seasonal variation where spring and
summer emissions are higher than the other seasons. The
EDGAR42 case also shows that summer and spring emis-
sions are higher than the other seasons. For Region 8, sea-
sonal variation in N2O emissions is undetermined because
of high posterior uncertainties although winter posterior
emissions are significantly higher than EDGAR.

4. Discussion

[20] The N2O emissions estimated in this study can be
compared with those from other work for the Continental U.S.
Spatially averaged N2O emissions from Regions 6, 7 and
8 during late spring and early summer are 2.5� 0.4 times the
EDGAR32 inventory. This is essentially consistent with
results described in Kort et al. [2008], where N2O emissions
over a larger area of the U.S. and southern Canada were larger
than the EDGAR32 inventory by a factor of 2.6� 0.5 for the
May – June, 2003 period.
[21] Beyond the comparison for spring and summer,

seasonal dynamics of N2O emissions appear important for
the mixture of urban, agricultural, and natural landscapes.
Emissions for Central California in fall differ from
EDGAR32 and EDGAR42 inventories by factors of 1.6 �
0.3 and 1.6 � 0.3, respectively, indicating that N2O emis-
sions vary by nearly 30% throughout the seasonal cycle.
[22] While it would be desirable to spatially resolve

emissions, the footprints obtained for the single tower limit

our ability to separate emissions from different sub-regions.
This can be judged by the magnitude of cross-correlations
between posterior emission estimates between different sub-
regions [e.g., Bergamaschi et al., 2005]. For our study,
cross-correlations derived from the posterior covariance
matrix were negative between Regions 6 and 7 (�0.6 to
�0.1), with smaller anti-correlations between those regions
and Region 8. This suggests that the large emissions in
Region 7 in spring and summer can be traded off against
emissions from Region 6 in a manner that cannot be uniquely
resolved from the inversion system driven by data from a
single tower [Tarantola, 1987].
[23] Putting our results in the context of California’s total

N2O emissions requires an assumption about the spatial
distribution of N2O emissions. If the spatial distribution of
EDGAR is applied across California using the mean esti-
mated scaling factor from Regions 6, 7, and 8, then total
N2O emissions would be larger than the current state emis-
sion inventory by a factor of 2.7 � 0.5, constituting 8.1 �
1.4% of California’s total estimated GHG emissions [CARB,
2012]. While there is no current evidence to suggest that the
spatial distribution of N2O emissions is incorrect, analysis of
long-term measurements with footprints covering more of
California is needed to improve the estimate of state total
annual N2O emissions.
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